Pancake proportions

Name: \qquad Date: \qquad

Information sheet

You need this sheet to answer all the questions except Q8.

Next Tuesday is Pancake Day!
The Black Bull Inn has a special Shrove Tuesday lunch / dinner menu
Lunch: 11am-3pm
Dinner: 6.00pm -9.30pm

Blueberry sauce

3 cups blueberries
1 cup water
$1 / 2$ cup sugar
$11 / 2$ tablespoons corn flour mixed with 3 tablespoons lemon juice
$1 / 2$ teaspoon vanilla extract

Black Bull Inn: pancake recipes

	Traditional	Vegan	Gluten-free
Makes:	100 pancakes	15 pancakes	6 pancakes
	1 kg plain flour 1 tbs salt (15 g) 20 eggs 2 litres milk 750 ml water	225 g plain flour 1 tsp salt (5 g) 675 ml almond milk 5 tbs vegetable oil	120 g rice flour $1 / 4$ tsp salt 90 ml milk 1 tbs vegetable oil 2 eggs

Abbreviations: tbs = tablespoon (1tbs = 15 ml). $\mathrm{tsp}=$ teaspoon ($1 \mathrm{tsp}=5 \mathrm{ml}$)

Hot chocolate sauce for pancakes:

Use cocoa powder and caster sugar in a ratio of 6:11
Whisk the sugar, cocoa powder and a dash of hot water together in a small pan over a gentle heat.
Add extra water depending on how thick you require the sauce.

Pancake proportions
Name: \qquad Date: \qquad

Part A: Proportion (Level 1 non-calculator)

1. How many eggs do you need to make 3 gluten-free pancakes?

Show your working out and your answer in the box.

(L1.17-2 marks)
2. How much milk do you need to make 2 gluten-free pancakes?

Show your working out and your answer in the box.

(L1.17-2 marks)
3. There is only 1500 ml milk in the Black Bull kitchen.
a. How many traditional pancakes can the chef make?

Show your working out and your answer in the box.

b. Show a check for one of your calculations in 3a.

Pancake proportions

Name: \qquad Date: \qquad

Part B: Proportion (Level 1). 蓱 You may use a calculator.

4. The head chef makes a chart so that Black Bull kitchen staff know how to make smaller and larger batches of the vegan pancake mix.
Complete the information in the chart. You must include units of measure.

(L1.17-4 marks)

VEGAN PANCAKES			
To make:	$\mathbf{3 0}$ pancakes	$\mathbf{3}$ pancakes	$\mathbf{1 2}$ pancakes
Plain flour			
Salt		1 g	
Almond milk			
Vegetable oil			4 tbs (or 60ml)

(L1.17-10 marks)

Pancake proportions

Name: \qquad Date: \qquad

Part C: Ratio (L1-2). 罡 Show your working out.

Give all answers in the simplest form. A ratio in simplest form can only whole numbers.

5. Blueberry sauce recipe
a. What is the ratio of water to blueberries?
\qquad : \qquad
b. What is the ratio of blueberries to water to sugar?
\qquad : \qquad : \qquad
c. What is the ratio of cornflour to lemon juice?
\qquad : \qquad
6. Traditional pancake recipe
a. What is the ratio of water to milk in the traditional pancake recipe?
\qquad : \qquad
b. What is the ratio of salt to plain flour?
\qquad : \qquad
7. Hot chocolate sauce recipe
a. The head chef uses 30 g cocoa powder to make the sauce.

How much sugar does he need? \qquad
b. A junior chef makes a larger batch of sauce. He uses 165 g sugar.

How much cocoa powder does she need? \qquad (L2.11-2 marks)

Pancake proportions

Name: \qquad Date: \qquad
8. A professional chef can make 40 pancakes in an hour.
a. How long would it take 2 chefs to make 40 pancakes? \qquad

(L2.11 - 2 marks)
b. How long would it take 5 chefs to make 600 pancakes? \qquad

(L2.11-3 marks)
9. 480 pancakes are eaten over the lunchtime period at the Black Bull Inn.

How many chefs were making pancakes?

(L2.11-4 marks)
10. Four chefs make pancakes over the entire dinner session at the Black Bull Inn. How many pancakes do they make?

(L2.11-4 marks)

Subject content - Reformed FUNCTIONAL SKILLS MATHEMATICS (effective from Sept 2019)

$\checkmark \checkmark$ indicates main content \& problem-solving skill(s) covered in this resource, although these may vary with the student group and how the resource is used by the teacher. $\checkmark=$ minor content. $\rightarrow=$ not covered but included to show progression across levels (content at each level subsumes and builds upon the content at lower levels). Only number \& number system content is shown here. Full content (which also includes Measures, Shape \& space and Handling Information \& Data) at: DfE https://www.gov.uk/government/publications/functional-skills-subject-content-mathematics

1. Fundamental mathematical knowledge and skills These must be demonstrated in their own right, both with and without a calculator, in addition to being used to solve problems or complete tasks.
Entry Level 3

Level 1

Level 2

Using numbers and the number system (N)

E3.1 Count, read, write, order and compare numbers up to 1000
E3.2 Add and subtract using three-digit whole numbers \rightarrow E3.3 Divide three-digit whole numbers by single and double digit whole numbers and express remainders \rightarrow E3.4 Multiply two-digit whole numbers by single and double digit whole numbers \rightarrow
E3.5 Approximate by rounding numbers less than 1000 to the nearest 10 or 100 and use this rounded answer to check results
E3.6 Recognise and continue linear sequences of numbers up to 100
E3.7 Read, write and understand thirds, quarters, fifths and tenths including equivalent forms \rightarrow E3.8 Read, write and use decimals up to two decimal places
E3.9 Recognise and continue sequences that involve decimals

L1.1 Read, write, order and compare large numbers (up to one million) L1.2 Recognise and use positive and negative numbers
L1.3 Multiply and divide whole numbers and decimals by $10,100,1000$
L1.4 Use multiplication facts and make connections with division facts \checkmark L1.5 Use simple formulae expressed in words for one or two-step operations L1.6 Calculate the squares of one-digit and two-digit numbers
L1.7 Follow the order of precedence of operators
L1.8 Read, write, order and compare common fractions and mixed numbers 1.9 Find fractions of whole number quantities or measurements L1.10 Read, write, order and compare decimals up to three decimal places L1.11 Add, subtract, multiply and divide decimals up to 2 decimal places L1.12 Approximate by rounding to a whole number or to one or two decimal places
L1.13 Read, write, order and compare percentages in whole numbers 1.14 Calculate percentages of quantities, including simple percentage increases / decreases by 5% and multiples thereof L1.15 Estimate answers to calculations using fractions and decimals L1.16 Recognise and calculate equivalences between common fractions, percentages and decimals
L1.17 Work with simple ratio and direct proportions

L L2.1 Read, write, order and compare positive and negative numbers of any size
L2.2 Carry out calculations with numbers up to one million including strategies to check answers including estimation and approximation L2.3 Evaluate expressions and make substitutions in given formulae in words and symbols
L2.4 Identify and know the equivalence between fractions, decimals and percentages L2.5 Work out percentages of amounts and express one amount as a percentage of another
L2.6 Calculate percentage change (any size increase and decrease), and original value after percentage change L2.7 Order, add, subtract and compare amounts or quantities using proper and improper fractions \& mixed numbers \checkmark
L2.8 Express one number as a fraction of another
L2.9 Order, approximate and compare decimals
L2.10 Add, subtract, multiply and divide decimals up to three decimal places
L2.11 Understand and calculate using ratios, direct proportion and inverse proportion
L2.12 Follow the order of precedence of operators, including indices

2. Mathematical problem solving (at all levels of Functional Mathematics)

Although underpinning knowledge is tested in its own right, problem solving is a core element of Functional Skills mathematics yet should not obscure or add additional mathematical complexity beyond the level of the qualification. Defining problem solving is a challenge but the attributes below may help. Not all (often just one) of the listed attributes must be present in a single task for it to be considered to be problem solving. \checkmark indicates why all or parts of this resource can be considered to be problem solving. Source: DfE (Feb 2018) https://www.gov.uk/government/publications/functional-skills-subject-content-mathematics.

One or more of the following attributes may be present in a single task for it to be considered problem solving:

A Tasks that have little or no scaffolding: there is little guidance given to the student beyond a start point and a finish point. Questions do not explicitly state the mathematical process(es) required for the solution.
B Tasks that provide for multiple representations, such as use of a sketch or a diagram as well as calculations.
C The information is not given in mathematical form or in mathematical language; or there is a need for the results to be interpreted or methods evaluated, for example, in a real-world context.
D Tasks have a variety of techniques that could be used
E The solution requires understanding of the processes involved rather than just application of the techniques.

Solving mathematical problems, carrying out tasks and decision making.

Entry 1 (E1) Entry 2 (E2) Level 1 (L1) Level 2 (L2)

Students are expected to be able to use the content knowledge and skills to recognise and obtain a solution to:
${ }^{1}$ a simple problem

E1a. Use given mathematical information and recognise and use simple mathematical terms
appropriate to E1

E2a. E3a. Use given mathematical information including numbers, symbols, simple diagrams and charts

E2b/3b. Recognise, understand and use simple mathematical terms appropriate to E2 / E3

E1b. E2c. E3c. Use the methods given above to produce, check and present results that make sense [E3 only: to an appropriate level of accuracy].
E1c. Provide a simple explanation for those results.

E[2d]/E3d. Present appropriate explanations using numbers, measures, simple diagrams, [simple] charts and symbols appropriate to Entry Level 2./ E3

${ }^{2}$ a straightforward problem $\sqrt{3}$ a complex problem

L1a. L2a. Read, understand and use mathematical information and mathematical terms used at this level \checkmark
L1b. L2b. Address individual problems as described above L1c. L2c. Use knowledge and understanding to a required level of accuracy \checkmark
L1d. L2e. Analyse and interpret answers in the context of the original problem \checkmark
L1e. L2f. Check the sense, and reasonableness, of answers \checkmark

L1f. Present results with appropriate explanation and interpretation demonstrating simple reasoning to support the process \& show consistency with the evidence presented \checkmark L 2 g . Present results and explain results clearly and accurately demonstrating reasoning to support the process and show consistency with the evidence presented

Problem type:

Level:
Draws upon knowledge
or skills from:
Number of steps or processes
Context

${ }^{1}$ Simple problem	${ }^{2}$ Straightforward		
All levels	L1 and L2		One MCA or a combination
:---			
of any two MCA	\left\lvert\,	One MCA only	
:---			
1		More than 1	
:---			
Familiar to all and easily described			
Less familiar - requires some comprehension	\right.		

${ }^{3}$ Complex

Level 2 only
Up to a combination of any three MCA

At least 2
Less familiar - requires interpretation and analysis

Abbreviations: MCA = mathematical content area(s). NS = Using numbers and the number system. MS = Using common measures, shape and space. HD = Handling information and data.

Feb 2020. Reformed L1-L2 Functional Maths. Contributed by Maggie Harnew, Abingdon \& Witney College. Search for Maggie on www.skillsworkshop.org For related resources visit the download page for this resource at skillsworkshop. Page 7 of 8

Background

This resource covers all the Functional Skills content descriptors relating to ratio and proportion. It was written with mixed L1-L2 classes in mind. I wanted to experiment with inverse proportion questions (a new topic in Reformed Functional Maths) but wanted to build up to them gradually. The questions are contextualised and problem based, with no underpinning taught, so learners will need an introduction to ratios (or a refresher) first.

In order to upload this on Shrove Tuesday 2020, I wrote in great haste so there may be errors - especially in the answer sheet. Feedback on content and question styles is welcomed but please do not report answer sheet errors unless you also have a resource of your own that you would like to share. Thank you for your support of skillsworkshop

Maggie Harnew, Feb 25th 2020.

Answers

There are many ways of working out (wo) proportion problems. Accept any valid method.
Unless otherwise stated award: 1 mark for a valid process (even if the final answer incorrect) and 1 mark for correct answer (ca). Max marks = 50. Suggested 'pass' marks: L1 (18), L2 (35).

3. a. 2 litres $=2000 \mathrm{ml}$ (1 mark). 2000 ml makes 100 pancakes so 1000 ml makes 50 and 500 ml makes 25.50 + $25=75$ pancakes (or $3 \times 25=75$).
b. acceptable reverse calculation e.g. $75 / 3=25$). Part A - 8 marks
4. Minimum of one set wo per ingredient (4). 1 mark per answer (10).

	$\mathbf{3 0}$	$\mathbf{3}$	$\mathbf{1 2}$
Flour	450 g	45 g	180 g
Salt	$10 \mathrm{~g}(2 \mathrm{tsp})$	1 g	4 g
Milk	1350 ml	135 ml	540 ml
Oil	$10 \mathrm{tbs}(150 \mathrm{ml})$	$1 \mathrm{tbs}(15 \mathrm{ml})$	4 tbs

Part B - 14 marks
5. a. 1:3 (no wo required)
b. 6:2:1 (1 wo, 1 ca)
c. 1:2 (1 wo, 1 ca)
6. a. 3:8 (1 wo, 1 for correct but unsimplified or partially simplified answer) or 2 for fully correct answer)
b. 3:200
7. a. 55 g cocoa powder
b. 165 g sugar

Part C-15 marks
8. a. 30 minutes (half an hour) b. 3 hours (5 chefs 200 per hour)
9. lunchtime is 4 hrs (11am-3pm) 1 $480 / 4=120$ per hour $=3$ chefs
10. dinner session is 3.5 hours (6 pm $9.30 \mathrm{pm}) 1.4$ chefs $=160$ pancakes per hour. $160 \times 3.5=560$ pancakes Part D - 13 marks (allow 2 marks per correct answer for Q8b, 9, 10)

An editable Word version of this resource is available, on a one to one exchange basis for your own resource contribution. If you wish to become a registered contributor, please contact Maggie using the site contact link. Thank you.

