

Scenario

Sou are looking to run your own clothes store and have employed a company to do some research. The ir findings are below but you need to analyse the data to decide upon some aspects of the business.

$$
\text { Stage } 1 \text { - The Property }
$$

The following properties have beenchosen (plans below). You are looking for the property with the most space, so which one should you choose?

$\mathcal{T A S} \mathcal{K} 1$

Calculate the area for each property to decide which one to use.

$$
\text { Stage } 2-\mathcal{T h e} \text { Stock }
$$

Research has provided you with a table of prices of different
 garments from your main rivals and the ir prices:

$\mathcal{N} \mathcal{A M E}$	$\mathcal{B U R I} O \mathcal{N}$	$\mathcal{D O} \mathcal{T}$	$\mathcal{B I N} \mathcal{N} N$	PRI MAR R	$\mathcal{N} E X T$	RI
geans	34.95	20.95	65.00	8.00	45.00	40.00
Shirts	36.97	19.97	60.00	10.00	50.00	42.00
Shoes	35.95	24.95	75.00	15.00	55.00	50.00
Traine rs	40.00	24.96	80.00	20.00	60.00	55.00

You need to decide what prices you should charge for each garment.

$\mathcal{T A S K} 2$

Work out the mean average price of the each garment and use this as the price to charge.
Also calculate the median and range for each garment.

$$
\text { Stage } 3-\mathcal{T a x}
$$

The government have decided to put a tax on the price you are going to charge for each garment.
The taxes are worked out as a \% of the average price (to nearest \pm).

Item	Tax - \% of ave rage price	Tax charged	New Price
geans	20% of ave rage price		
Shirts	35% of ave rage price		
Shoes	15% of ave rage price		
Trainers	30% of average price		

TAS K 3

Work out the tax for each garment and then the new price.

$$
\mathfrak{N E W} \operatorname{PRICE}=\mathcal{T A X}+\mathcal{A V E R A G E} \operatorname{PRICE} \text { (Rounded to ne arest } t \text {) }
$$

Stage 4-Employees

You have decided that you would like a ratio of 3 women to every 1 man in your stores.
You have decided to open 12 stores across the UK. Each store will employ 16 staff.

TAS K 4
Work out how many men and women you will have:
A. Ineach store
\mathcal{B} - In the entire company (not including you).

$$
\text { Stage } 5 \text {-Location }
$$

The best business in the North is located around Newcastle

The scale is $5 \mathrm{~cm}=20 \mathrm{miles}$
$\mathcal{T A S} \mathcal{K} 5$
What are the following distances, approximately?
A. Newcastle upon $\mathcal{T} y n e$ to $\mathcal{D u r f a m}$
B. Newcastle upon Tyne to Sunderland
C. Newcastle to Hartlepool

The company have decided to pack most of the stockinto boxes.

The boxes will come in two sizes:
A. $1.5 m \times 2 m \times 1 m$
B. $3 m \times 1 m \times 1.5 m$

They will be 5 size (A) boxes and 4 size (B) 6oxes.
These will be packed into a lorry that measures:

Lorry-6mx4mx2m

TAS K 6
Calculate the volume of the different boxes and see if they will fit into the corry.

They will also use long tubes for the advertising and have decided on the following tubes:

$\mathcal{T A S K} 7$

Work out the volume of the tube, using the formula below:
πr^{2} 犭 Lengt
(where $\pi=3.14$)

欠unning a Business'Level2 Assignment - Answers

TAS K 1
A $210 m^{2}(168+42)$
B $294 m^{2}(288+6)$
C $162 m^{2}(96+66)$
Therefore property \mathcal{B} is the largest

TAS K 2

```
Ieans Mean = £213.90/6=£35.65(£36)
    Median =(34.95+40.00)/2=37.475 (£ 37.48)
    Range = £65.00 £ & 8.00=£57.00
Shirts Mean= £218.94/6 = £ 36.49 (£ 36)
    Median =(36.97+42.00)/2=39.485 (& 39.49)
    Range = £60.00 - £ 10.00=£50.00
Shoes Mean = £255.90/6=£42.65(£43)
    Median =(35.95 + 50.00)/2=42.975 (£42.98)
    Range = £75.00 E £ 15.00=£60.00
Trainers Mean = £279.96/6=t46.66(t47)
    Median =£40.00 + £55.00/2=£47.50
    Range = £80.00 - £20.00=\pm60.00
```


TAS K 3

Item	Tax - \% of average price	Tax charged	New Price
Ieans	20% of ave rage price (± 36)	± 7.20	± 43.20
S firts	35% of ave rage price (± 36)	± 12.60	± 48.60
			± 49.45
S foes	15% of average price (± 43)	± 6.45	± 61.10
Trainers	30% of ave rage price (± 47)	± 14.10	

TAS $\mathcal{K} 4$
\mathcal{A} Ineacfistore $=12$ women and 4 men
\mathcal{B} Total in company $=144$ women and 48 men

TAS K 5

A approx 5 cm on $\operatorname{map}(=20$ miles $)$
\mathcal{B} approx 3 cm on map ($=12$ miles)
Capprox 8 cm on map ($=32$ miles)

TAS K 6

\mathcal{A} volume of $160 x=3 \mathrm{~m}^{3}$. Total volume of boxes size $\mathcal{A}=3 \times 5=15 \mathrm{~m}^{3}$ \mathcal{B} volume of 16 ox $=4.5 \mathrm{~m}^{3}$. Total volume of boxes size $\mathcal{B}=4.5 \times 4=18 \mathrm{~m}^{3}$ Total volume of 6oxes $=33 \mathrm{~m}^{3}$

Volume of lorry $=6 \times 4 \times 2=48 \mathrm{~m}^{3}$
Thus there is enough physical space in the lorry - but you must still work out if the boxes can be fitted into the space.
This is possible.
For example (assuming boxes can be placed any way up in the lorry):
$4 \times \mathcal{B o} \times \mathcal{B}$ as the 'bottom layer'(this would completely cover the floor area of the lorry and fill it to a feight of 1.5 m .
$4 \times \mathcal{B o x} \mathcal{A}$ as the next layer (this would now fill the lorry another 1 m making total filled height of 2.5 m)
$1 \times \mathcal{B o x} \mathcal{A}$ on top layer.
Other arrangements may be possible!

TAS K 7

Volume tube $=\pi r^{2}$ х length
$r=10 \mathrm{~cm}$
$\pi=3.14$
Length $=80 \mathrm{~cm}$

Volume $=3.14 \times 100 \times 80$
$=314$ x 80
$25120 \mathrm{~cm}^{3}$

