Name
Date

NUMBER

L1.6 A square number is a number times itself so $2^{2}=2 \times 2=4 \quad 3^{2}=3 \times 3=9$

L1.7 Order of operations: BIDMAS
Brackets, Indices (Powers),
Division/Multiplication, Addition/Subtraction

PSE3c, PSL1e - see p11 Reverse calculations are often needed to check answers.

L1.12 Rounding

Note where you are asked to round to.
E.g. to nearest ten, to one decimal place, etc.
$5.5,5.6,5.7,5.8,5.9$ round to 6
5.1, 5.2, 5.3, 5.4 round to 5

In multi-step tasks do not round until the last step
$1,4,9,16,25,36,49,64,81,100$
Calculators follow BIDMAS. In multi-step calculations it is better to total at each step.
E.g. when finding the mean, add all the values, then press = button before you press divide.
E.g. for $20 \times 5=100$ you could use
$100 \div 5=20$ for the check or $100 \div 20=5$

BUT you need to think practically...
Buses can sit 55 people. There are 176 people.
How many buses do you need?
$176 \div 55=3.2$ so you need 4 buses
E.g. At midday it is $12^{\circ} \mathrm{C}$ but by midnight it is $-4^{\circ} \mathrm{C}$. How many degrees did the temperature fall?
i.e. what is the difference between $12^{\circ} \mathrm{C}$ and $-4^{\circ} \mathrm{C}$?

12 down to $0=12$ degrees
0 down to $-4=4$ degrees
$12+4=16$ so the temperature fell by $16^{\circ} \mathrm{C}$.

At midday it was $6^{\circ} \mathrm{C}$ but by dawn the temperature had dropped by $13^{\circ} \mathrm{C}$. What was the temperature at dawn?
6 down to $0=6^{\circ}$
13-6 = $7 \quad 0$ down 7 degrees $=-7^{\circ} \mathrm{C}$
The temperature at dawn is $-7^{\circ} \mathrm{C}$

Offer One: potatoes 500g for 48p
Offer Two: potatoes 2 kg for $£ 1.65$

Need to know $1000 \mathrm{~g}=1 \mathrm{~kg}$
Offer One: $\quad 500 \mathrm{~g}$ for $£ 0.48$
$x 2 \quad 1$ kg for $£ 0.96$

Offer Two: 2 kg for $£ 1.65$
$\div 2 \quad 1 \mathrm{~kg}$ for $£ 0.83$
Now both expressed as 1 kg , and in $£$, can
compare. Offer Two is the cheaper offer

Name
Date \qquad Date -

L1.17 Ratio and proportion

Draw up a ratio table with the information given in the question. Use it to see what you need to times or divide by.

If dividing by a ratio, remember Adam Drives
Mercedes: add, divide, multiply

If you know one of the payments, use a ratio table

A cake for 4 people needs 250 g of flour and 125 g of butter.
How much flour and butter for a cake for 12

people?
X3 people 4 12 flour g 250 750 butter g 125 375

Megan has done 5 hours work and Harriet 3 hours. They are paid $£ 60$ between them. How much is Megan paid, and how much is Harriet paid?

Add:	$5+3=8$ hours
Divide:	$60 \div 8=£ 7.50$ per hour
Multiply:	$5 \times 7.50=£ 37.50$ to Megan
	$3 \times 7.50=£ 22.50$ to Harriet

Pippa has worked for 10 hours and been paid $£ 150$. Sinead has worked for 6 hours. She is paid at the same rate. How much is she paid?
$150 \div 10=£ 15$ per hour $\quad \mathrm{X} 15$

	hours	paid
Pippa	10	150
Sinead	6	$\mathbf{9 0}$

$6 \times 15=\underline{90}$

NUMBER: CALCULATOR

L1.9 Fractions of an amount: divide by the denominator, times by the numerator.	To find $3 / 8$ of 240 $\begin{aligned} & 240 \div 8=30 \\ & 30 \times 3=\underline{90} \end{aligned}$
L1.14 Percentages To find a percentage of an amount, multiply the amount by the \%	E.g. to find 45% of $£ 360$ $360 \times 45 \div 100=162$ Or $360 \times 45 \%$ shift (1 on Casio
L1.16 To compare fractions, decimals and \% convert all to the same i.e. all fractions, all decimals, or all \%s. To convert a fraction to a percentage: divide the numerator by the denominator then $\times 100$. To convert a decimal to a \% multiply by 100	$\begin{gathered} \text { E.g. } \frac{15}{20}=15 \div 20=0.75 \\ 0.75 \times 100=75 \% \end{gathered}$

Name
Date

NUMBER: NON-CALCULATOR

L1.3

X 10 - move the decimal point one place to right X 100 - move the decimal point two places X $1000=$ move the decimal point three places
$\div 10=$ move the decimal point one place to left
$\div 100=$ move the decimal point two places
$\div 1000=$ move the decimal point three places

E.g. \quad| 5.12×10 | $=51.2$ | |
| :--- | :--- | :--- |
| | 5.12×100 | $=512$ |
| | 5.12×1000 | $=5120$ |
| | | |
| | $673.9 \div 10$ | $=67.39$ |
| | $673.9 \div 100$ | $=6.739$ |
| | $673.9 \div 1000$ | $=0.6739$ |

L1.16 Fractions | Decimals | Percentages Learn the most common fractions and their decimal and \% equivalents

Numerator	$\frac{2}{3}$	$1 / 3$	$=0.33$	$=33 \%$
Denominator	3	$2 / 3$	$=0.67$	$=67 \%$

L1.8 To find an equivalent fraction multiply both the numerator and the denominator by the same number.
To simplify a fraction divide both numerator and denominator by the same factor till you can't divide any more.

L1.9 To find $1 / 4$ of an amount with no calculator, divide by 2 (to find $1 / 2$) then divide by 2 again. OR Divide by 4.

To find $3 / 4$ of an amount, find $1 / 4$ then multiply by 3
E.g. $\frac{1}{2}=\frac{2}{4}=\frac{3}{6}=\frac{4}{8}=\frac{40}{80}$
E.g. 6/12 divide both by 2 3/6 check $3 / 6$ divide both by $3 \quad 1 / 2 \quad$ stop

$1 / 4$	$=0.25 \times 100$	$=25 \%$
$1 / 2$	$=0.5$	
$3 / 4$	$=0.75$	
$1 / 3$	$=0.33$	$=75 \%$
$2 / 3$	$=0.67$	$=33 \%$

| E.g. $6 / 12$ | divide both by 2 | $3 / 6$ |
| ---: | :--- | :--- | | check |
| :--- |
| $3 / 6$ |

E.g. Find one quarter of 24
$24 \div 2=12$
$12 \div 2=\underline{6}$
Or $24 \div 4=\underline{6}$
E.g. $\quad 3 / 4$ of $12=$
$12 \div 4=3 \quad 3 \times 3=\underline{9}$
E.g. $15 \%=15 / 100$

Find 15% of $£ 45$
To find 10% without a calculator, divide by 10 To find 15%, find 10%, divide it by 2 to find 5%, add the two together

10\% of $£ 45$		= $£ 4.50$
5% of $£ 45$	$=4.50 \div 2$	= $£ 2.25$
15\%	Total	= $£ 6.75$
E.g. to add $1.2+31.6+0.43$		
1.20 +		
31.60		
0.43		
33.23		
E.g. 1.5×3	$15 \times 3=45$	Ans $=4.5$
1.5×2.5	$15 \times 25=375$	Ans $=3.75$
E.g. $70 \div 0.5$	$0.5 \times 10=5$	$70 \times 10=700$
$700 \div 5=140$		140
		$5 \quad 700$

Name
Date \qquad

SHAPE, MEASURES, TIME.

L1.26 Angles	Acute $=$ less than 90° (a cute little angle) Right angle $=90^{\circ}$		
Acute, right angle, obtuse, straight line, reflex.			
Angles round a point add up to 360°.		\quad	Obtuse $=$ greater than 90 and less than 180°
:---			
Straight line $=180^{\circ}$			
Reflex $=$ between 180 and 360°			

Name \qquad Date \qquad

3D solid objects: cube, cuboid, cylinder, pyramid, prism
L1.25 Recognise the net of a cube, cuboid, cylinder, pyramid or prism.

Be able to draw the plan (top view) and elevation (front and side view) of a cube and a cuboid

Net of a cube

Measures

L1.20 Metric units: mm, cm, m, km, g, kg, ml, cl, litres
Kilo $=x 1000$
Milli $=\div 1000$
Centi $=\div 100$

E2.7 L1.20 Time

60 seconds = one minute
60 minutes $=$ one hour
24 hours = one day
7 days in a week
365 /366 days in a year
52 weeks in a year
12 months in a year

Note: 3.5 hours does not mean 3 hours 50 minutes or 3 hours 5 minutes. (3.5 hours means 3 and a half hours or 3 hours 30 minutes) Work in seconds or minutes (60), not in decimal time. Use the ${ }^{\square \prime \prime}$ button on the Casio.

Metric conversions: LEARN THESE
Length: $\mathrm{m} \quad$$1 \mathrm{~cm}=10 \mathrm{~mm} \quad 1 \mathrm{~m}=100 \mathrm{~cm}$ $1 \mathrm{~km}=1000 \mathrm{~m}$
Weight: $\mathrm{g} \quad$$1 \mathrm{~kg}=1000 \mathrm{~g}$ Capacity: l 1 litre $=1000 \mathrm{ml}$
E.g. $5 \mathrm{~km}=5000 \mathrm{~m}, \quad 236 \mathrm{~cm}=2.36 \mathrm{~m}$

Know the properties of 3D shapes.
A cuboid has six faces. It has 8 vertices and 12 edges.
A cube has six faces, all squares. It has 8 vertices and 12 edges.

A prism is a solid like a cuboid or a Toblerone box where the cross section (the front face) stays the same all the way through. Imagine slicing through a cuboid loaf of bread.

3D shape images: https://www.mathsisfun.com/

Metric conversions: LEARN THESE

Length: $\mathrm{m} \quad 1 \mathrm{~cm}=10 \mathrm{~mm} \quad 1 \mathrm{~m}=100 \mathrm{~cm}$
$1 \mathrm{~km}=1000 \mathrm{~m}$
Weight: g $1 \mathrm{~kg}=1000 \mathrm{~g}$
Capacity: $1 \quad 1$ litre $=1000 \mathrm{ml}$
E.g. $5 \mathrm{~km}=5000 \mathrm{~m}, \quad 236 \mathrm{~cm}=2.36 \mathrm{~m}$

Learn the days in the months

January	31 days
February	$28 / 29$ da
March	31 days
April	30 days
May	31 days
June	30 days
July	31 days
August	31 days
September	30 days
October	31 days
November	30 days
December	31 days

Name
Date - \qquad

Money

E3.10 $100 \mathrm{p}=\mathrm{f} 1.00$
Write your answer in $£$ (usually) including the $£$ sign and two decimal places.

L1.21 Scale

Scale is a ratio. Use a ratio table to help you.

In metres	$x 100$ in cm	Squares: Divide by 50 cm
2 m	200 cm	4 squares
4 m	400 cm	8 squares

L1.21, L2.18 If given a map, measure accurately in cm or mm as indicated in the question

Convert to all in $£$ or all in p
E.g. $£ 3.50+46 p+£ 1.25$
$=3.50+0.46+1.25=\underline{£ 5.21}$
If the squares on the grid in question papers are
50 cm , to represent a shape $2 \mathrm{~m} \times 4 \mathrm{~m}$
Convert into $\mathrm{cm} \quad 2 \times 100=200 \mathrm{~cm}$
$4 \times 100=400 \mathrm{~cm}$
Divide by 50 cm

$$
\begin{aligned}
& 200 \div 50=4 \text { squares } \\
& 400 \div 50=8 \text { squares }
\end{aligned}
$$

E.g. Scale 1 cm on map is 10 km on the ground

On map cm	On ground in m (actual distance) $\times 10 \mathrm{~km}$
5 cm	50 km
3.7 cm	37 km

DATA

L1.29 Mean	$5,6,8,10,12,13$

If a question asks for 'average', find the mean.
To find the mean add all the values
Divide by the number of values
To find the range, find the highest value, subtract
the lowest value
If not in order, put numbers in order first to check you have the highest and lowest values.

L1.27 Tables

If asked to draw a table, look carefully at what you are asked to show. You need a column heading for each item.
Marks are awarded for the design of the table and the accuracy of transferring the data into your table.

Add:	total $=54$	
Divide	$54 \div 6=9$	Mean is $\underline{9}$
Range	$=13-5=8$	Range is $\underline{8}$

E.g. Quarterly sales

Find the data or read from the graph.

Quarter	Sales per quarter
Q1 Jan - Mar	Total of sales for Jan, Feb and Mar
Q2 Apr - Jun	130
Q3 Jul - Sept	230
Q4 Oct - Dec	300

L1.27 If asked to draw a graph, a bar graph is usually the best option.
Work out the scale on the y axis. It must go up in equal jumps
Label the x axis (e.g. months, flavour of crisps)
Label the y axis (e.g. frequency, no. of people)
Leave gaps between the columns.
L1.27 If drawing a pictogram, choose pictures that are easy to draw quickly and neatly.
Choose your scale egg. $\square=5$ cars.
Write the key.

If continuing a graph, follow what they have started e.g. a line graph, points joined with straight lines.

You could be asked to add points to a scatter diagram.

Line the pictures up underneath the first row in neat lines, so that the 'biggest' row is clearly the longest and the 'smallest' the shortest.

Name
Date \qquad

L1.27 Pie charts

Circle $=360^{\circ}$. Divide the circle by the total (e.g. people in a survey) to find degrees per item. Multiply by the no. items in each category. Draw the chart accurately. To draw a sector which is more than 180°, draw the other sectors first. The space that is left is the remaining sector.

90 people were asked how they came to college. Complete the table and draw an accurate pie chart.
$360 \div 90=4^{\circ}$ per person

Transport	No. of people	x4	Degrees on the pie chart
Bus	46	$\times 4$	184
Car	33	$\times 4$	132
Helicopter	1	$\times 4$	4
Pogo stick	7	$\times 4$	28
Camel	3	$\times 4$	12

Probability is expressed in fractions, or decimals, or percentages.
The total is 1 , or 100%
Find the probability of a student coming to college on a camel.
Means of travelling to college

Bus	Car	Helicopter	Camel
0.51	0.36	0.08	$?$
Add:	$0.51+0.36+0.08=0.95$		
Subtract:	$1-0.95=0.05$		

The probability of a student coming to college on a camel is 0.05 .

I pick a student at random. What is the probability that this student watches EastEnders? Looking at all the students, so /105 All those who watch EastEnders 47 Ans 47/105
What is the probability that a girl watches Emmerdale?

Only looking at girls /80
Watches Emmerdale 16
Ans 16/80

	EASTENDERS	CORONATION ST.	EMMERDALE	TOTAL
BOYS	12	10	3	25
GIRLS	35	29	16	80
TOTAL	47	39	19	105

Subject content - Reformed FUNCTIONAL SKILLS MATHEMATICS 2018 (takes effect from September 2019)

\checkmark indicates main content and problem-solving skill(s) covered in this resource, although these will vary with the student group and how the resource is used by the teacher. \rightarrow or $\leftarrow=$ not covered but included to show progression across levels (content at each level subsumes and builds upon the content at lower levels). Full content at: DfE (Feb 2018) https://www.gov.uk/government/publications/functional-skills-subject-content-mathematics

1. Fundamental mathematical knowledge and skills These must be demonstrated in their own right, both with and without a calculator, in addition to being used to solve problems or complete tasks.

Entry Levels 2 \& $3 \quad$ Level $1 \quad$ Level 2

Using numbers and the number system (N)

1. Count reliably up to 100 items
2. Read, write, order and compare numbers up to 200
3. Recognise and sequence odd and even numbers up to 100
4. Recognise and interpret the symbols + , -,
x, \div and $=$ appropriately
5. Add and subtract two-digit numbers
6. Multiply whole numbers in the range 0×0
to 12×12 (times tables) \rightarrow
7. Know the number of hours in a day and weeks in a year. \rightarrow
8. Divide two-digit whole numbers by single-digit whole numbers and express remainders \rightarrow
9. Approximate by rounding to the nearest 10 , and use this rounded answer to check results \rightarrow
10. Recognise simple fractions (halves, quarters and tenths) of whole numbers and shapes \rightarrow
11. Read, write and use decimals to one decimal place \rightarrow
E3.1 Count, read, write, order and compare numbers up to 1000
E3.2 Add and subtract using three-digit whole numbers \rightarrow
E3.3 Divide three-digit whole numbers by single and double digit whole numbers and express remainders \rightarrow
E3.4 Multiply two-digit whole numbers by single and double digit whole numbers \rightarrow E3.5 Approximate by rounding numbers less than 1000 to the nearest 10 or 100 and use this rounded answer to check results \rightarrow E3.6 Recognise and continue linear sequences of numbers up to 100 E3.7 Read, write and understand thirds, quarters, fifths and tenths including equivalent forms \rightarrow
E3.8 Read, write and use decimals up to two decimal places \rightarrow
E3.9 Recognise and continue sequences that involve decimals

L1.1 Read, write, order and compare large numbers (up to one million) L1.2 Recognise and use positive and negative numbers \checkmark L1.3 Multiply and divide whole numbers and decimals by 10,100 , 1000 ,
L1.4 Use multiplication facts and make connections with division facts L1.5 Use simple formulae expressed in words for one or two-step operations L1.6 Calculate the squares of one-digit and two-digit numbers \checkmark
L1.7 Follow the order of precedence of operators \downarrow
L1.8 Read, write, order and compare common fractions and mixed numbers \checkmark
1.9 Find fractions of whole number quantities or measurements \checkmark L1.10 Read, write, order and compare decimals up to three decimal places \checkmark L1.11 Add, subtract, multiply and divide decimals up to 2 decimal places \checkmark

L1.12 Approximate by rounding to a whole number or to one or two decimal places \checkmark
L1.13 Read, write, order and compare percentages in whole numbers
1.14 Calculate percentages of quantities, including simple percentage increases / decreases by 5% and multiples thereof \checkmark
L1.15 Estimate answers to calculations using fractions and decimals L1.16 Recognise and calculate equivalences between common fractions, percentages and decimals \checkmark L1.17 Work with simple ratio and direct proportions

L L2.1 Read, write, order and compare positive and negative numbers of any size
L2.2 Carry out calculations with numbers up to one million including strategies to check answers including estimation and approximation \leftarrow
L2.3 Evaluate expressions and make substitutions in given formulae in words and symbols
L2.4 Identify and know the equivalence between fractions, decimals and percentages \leftarrow
L2.5 Work out percentages of amounts and express one amount as a percentage of another \leftarrow
L2.6 Calculate percentage change (any size increase and decrease), and original value after percentage change \leftarrow L2.7 Order, add, subtract and compare amounts or quantities using proper and improper fractions and mixed numbers L2.8 Express one number as a fraction of another
L2.9 Order, approximate and compare decimals
L2.10 Add, subtract, multiply and divide decimals up to three decimal places \leftarrow L2.11 Understand and calculate using ratios, direct proportion and inverse proportion \leftarrow
L2.12 Follow the order of precedence of operators, including indices \leftarrow

1. Fundamental mathematical knowledge and skills These must be demonstrated in their own right, both with and without a calculator, in addition to being used to solve problems or complete tasks.
Entry Level $3 \quad$ Level $1 \quad$ Level 2

Using common measures, shape and space (MSS)

E3.10 Calculate with money using decimal notation \& express money correctly in writing in pounds \& pence E3.11 Round amounts of money to the nearest $£ 1$ or 10 p
E3.12 Read, measure and record time using am and pm
E3.13 Read time from analogue and 24 hour digital clocks in hours and minutes E3.14 Use and compare measures of length, capacity, weight and temperature using metric or imperial units to the nearest labelled or unlabelled division E3.15 Compare metric measures of length including millimetres, centimetres, metres and kilometres \rightarrow E3.16 Compare measures of weight including grams and kilograms \rightarrow E3.17 Compare measures of capacity including millilitres and litres \rightarrow E3.18 Use a suitable instrument to measure mass and length E3.19 Sort 2-D and 3-D shapes using properties including lines of symmetry, length, right angles, angles including in rectangles and triangles \rightarrow E3.20 Use appropriate positional vocabulary to describe position and direction inc. eight compass points and including full/half/quarter turns \rightarrow

L1.18 Calculate simple interest in multiples of 5% on amounts of money L1.19 Calculate discounts in multiples of 5% on amounts of money L1.20 Convert between units of length, weight, capacity, money and time, in the same system \checkmark
L1.21 Recognise and make use of simple scales on maps and drawings \checkmark L1.22 Calculate area and perimeter of simple shapes including those that are made up of a combination of rectangles \checkmark
L1.23 Calculate the volumes of cubes and cuboids \checkmark
L1.24 Draw 2-D shapes and demonstrate an understanding of line symmetry \& knowledge of the relative size of angles \checkmark
L1.25 Interpret plans, elevations and nets of simple 3-D shapes \checkmark L1.26 Use angles when describing position and direction, and measure angles in degrees \checkmark

L2.13 Calculate amounts of money, compound interest, percentage increases, decreases and discounts including tax and simple budgeting
L2.14 Convert between metric and imperial units of length, weight and capacity using a a) conversion factor and b) conversion graph \leftarrow
L2.15 Calculate using compound measures including speed, density and rates of pay L2.16 Calculate perimeters and areas of 2D shapes including triangles and circles and composite shapes including nonrectangular shapes (formulae given except for triangles and circles) \leftarrow
L2.17 Use formulae to find volumes and surface areas of 3-D shapes including cylinders (formulae to be given for 3-D shapes other than cylinders) \leftarrow
L2.18 Calculate actual dimensions from scale drawings and create a scale diagram given actual measurements \checkmark
L2.19 Use coordinates in 2-D, positive \& negative, to specify the positions of points L2.20 Understand and use common 2-D representations of 3-D objects \leftarrow
L2.21 Draw 3-D shapes to include plans and elevations \leftarrow
L2.22 Calculate values of angles and/or coordinates with 2-D and 3-D shapes \leftarrow

1. Fundamental mathematical knowledge and skills These must be demonstrated in their own right, both with and without a calculator, in addition to being used to solve problems or complete tasks.

Entry Level 3
 Level 1 Level 2

Handling information and data (HD)

E3.21 Extract information from lists, tables, diagrams and charts and create frequency tables \rightarrow
E3.22 Interpret information, to make comparisons and record changes, from different formats including bar charts and simple line graphs \rightarrow E3.23 Organise and represent information in appropriate ways including tables, diagrams, simple line graphs and bar charts \rightarrow

L1.27 Represent discrete data in tables, diagrams and charts including pie charts, bar charts and line graphs \checkmark L1.28 Group discrete data and represent grouped data graphically L1.29 Find the mean and range of a set of quantities \checkmark
L1.30 Understand probability on a scale from 0 (impossible) to 1 (certain) and use probabilities to compare the likelihood of events \checkmark
L1.31 Use equally likely outcomes to find the probabilities of simple events and express them as fractions \checkmark

L2.23 Calculate the median and mode of a set of quantities
L2.24 Estimate the mean of a grouped frequency distribution from discrete data \leftarrow L2.25 Use the mean, median, mode and range to compare two sets of data \leftarrow L2.26 Work out the probability of combined events including the use of diagrams and tables, including two-way tables \checkmark
L2.27 Express probabilities as fractions, decimals and percentages \leftarrow L2.28 Draw and interpret scatter diagrams and recognise positive and negative correlation
workshop

2. Mathematical problem solving (at all levels of Functional Mathematics)

Although underpinning knowledge is tested in its own right, problem solving is a core element of Functional Skills mathematics yet should not obscure or add additional mathematical complexity beyond the level of the qualification. Defining problem solving is a challenge but the attributes below may help. Not all (often just one) of the listed attributes must be present in a single task for it to be considered to be problem solving. \checkmark indicates why all or parts of this resource can be considered to be problem solving.
Source: DfE (Feb 2018) https://www.gov.uk/government/publications/functional-skills-subject-content-mathematics.

One or more of the following attributes may be present in a single task for it to be considered problem

 solving.A Tasks that have little or no scaffolding: there is little guidance given to the student beyond a start point and a finish point. Questions do not explicitly state the mathematical process(es) required for the solution.
B Tasks that provide for multiple representations, such as use of a sketch or a diagram as well as calculations.
C The information is not given in mathematical form or in mathematical language; or there is a need for the results to be interpreted or methods evaluated, for example, in a real-world context.
D Tasks have a variety of techniques that could be used.
E The solution requires understanding of the processes involved rather than just application of the techniques.

KEY: MCA = appropriate mathematical content area(s). NS = Using numbers and the number system. MS = Using common measures, shape and space. HD = Handling information and data.
${ }^{1}$ A simple mathematical problem requires working through one step or process. At Entry Level it is expected that students will be able to address individual problems each of which draw upon knowledge and/or skills from one MCA (NS, MS or HD). Context should be familiar to all students and easily described.

[^0]Solving mathematical problems, carrying out tasks and decision making (PS)

Entry $\mathbf{1}$ students	Entry $\mathbf{2}$ students	Entry 3	Level $\mathbf{1}$ students	Level $\mathbf{2}$ students
are expected to be	are expected to be	students are	are expected to be	are expected to be
able to:	able to:	expected to be able to:	able to:	able to:

Use the content knowledge and skills to recognise a ${ }^{1}$ simple problem and obtain a solution

E1a. Use given mathematical information and recognise and use simple mathematical terms appropriate to E1

E2a. E3a. Use given mathematical information including numbers, symbols, simple diagrams and charts

E2b. Recognise, understand and use simple mathematical terms appropriate to Entry Level 2

E3b. Recognise, understand and use simple mathematical terms appropriate to Entry Level 3 E1b. E2c. E3c. Use the methods given above to produce, check and present results that make sense [E3 only: to an appropriate level of accuracy].

E1c. Provide a simple explanation for those results.

E2d. Present appropriate explanations using numbers, measures, simple diagrams, simple charts and symbols appropriate to Entry Level 2.

E3d. Present results with appropriate explanation using numbers, measures, simple diagrams, charts and symbols appropriate to Entry Level 3.

Use the content knowledge and skills to recognise and obtain a solution or solutions to a: ${ }^{2}$ straightforward ${ }^{3}$ complex problem. problem.
L1a. L2a. Read, understand and use mathematical information and mathematical terms used at this level L1b. L2b. Address individual problems as described above
L1c. L2c. Use knowledge and understanding to a required level of accuracy

L2d. Identify suitable operations and calculations to generate results
L1d. L2e. Analyse and interpret answers in the context of the original problem

L1e. L2f. Check the sense, and reasonableness, of answers

L1f. Present results with appropriate explanation and interpretation demonstrating simple reasoning to support the process \& show consistency with the evidence presented

L2g. Present results and explain results clearly and accurately demonstrating reasoning to support the process and show consistency with the evidence presented

An editable Word version of this resource is available if you are a site contributor. If you are a skillsworkshop.org contributor please use the site contact link to request your free copy. If you wish to become a contributor please use the same link to request a free log-in and membership so that you can upload and share your own resources.

[^0]: ${ }^{2} \mathrm{~A}$ straightforward problem requires students to either work through one step or process or to work through more than one connected step or process. Individual problems are based on the knowledge and/or skills in the MCA (i.e. NS, MS or HD). At Level 1 it is expected that the student will be able to address individual problems, some of which draw upon a combination of any two of the MCA and require students to make connections between those content areas. The context of individual problems at L1 will require some comprehension in order for the student to be able independently to identify and carry out an appropriate mathematical approach.
 ${ }^{3}$ A complex problem requires a multi-step process, typically requiring planning and working through at least two connected steps or processes. Individual problems are based on a combination of the knowledge and/or skills from the MCA (NS, MS or HD). At Level 2 it is expected that the student will be able to address individual problems some of which draw upon a combination of all three MCA and require students to make connections between those content areas. The context of individual problems at L2 will require interpretation and analysis in order for the student to be able independently to identify and carry out an appropriate mathematical process or processes.

